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Abstract  

The problem of distinguishability of identical particles is considered from both experi- 
mental and theoretical points of view. It is argued that distinguishability has to be defined 
relative to a definite set of experiments and that the criterion by which the particles are 
distinguished should be specified. Failure to do so may cause mismatching between theory 
and experiment. On the theoretical level a distinction is made between indexed- and 
unindexed-particle theories, indices being unobserved intrinsic properties of the particles. 
A field theory of indexed particles is constructed and shown to be equivalent to the 
second quantization formalism, which is an unindexed-particle theory. 

1. Introduction 

It was observed by Mirman (1973) that the concepts of "identical particles" 
and "distinguishability" or "indistinguishability" have been poorly formulated 
in quantum theory. In most textbooks these notions are treated in a rather 
vague and intuitive way, without a firm relation to experiment. More or tess 
the same remarks apply to the relation between (in)distinguishability and the 
symmetry of the wave function of a many-particle system ("statistics"). 

Let us start with the not ion of "identical particles." Most definitions are 
rather tautological, like the one given by Messiah (1965): Two particles are 
identical if their physical properties are exactly the same. Strictly speaking, 
this definition would infer that two particles never can be identical, unless 
position is considered no longer as a physical property. The distinction made by 
Jauch (1966) between intrinsic properties (i.e., properties that are independent 
of the state of the system) and extrinsic properties (depending on the state of 
the system) seems to be more promising in this respect. Jauch defines two 
(elementary) particles to be identical if they agree in all their intrinsic properties. 
Position, as a dynamical variable, is an extrinsic property. So Messiah's problem 
does not  arise any more. 
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The distinction between intrinsic and extrinsic properties also introduces the 
possibility of  revealing the dependence of the identity of particles on the ex- 
perimental and theoretical context. Thus, by enlarging the class of experiments 
considered, there are two causes by which the identity of two particles may 
change: Either a new intrinsic property may be discovered, showing the dif- 
ference of two particles that were thought to be identical; or an (up until now) 
intrinsic property may show up dynamical behavior, thus making two different 
particles identical (when the other intrinsic properties are the same). We shall 
have reason to change Jauch's definition slightly in such a way that this depen- 
dence of the identity of particles on the class of experiments considered is 
more explicit. As this has to do with (in)distinguishability of the particles, we 
consider this next. 

As to (in)distinguishability, several different opinions can be found in the 
literature, e.g., (a) in classical as well as in quantum mechanics identical particles 
are indistinguishable (Messiah, 1965), (b) identical particles are distinguishable 
classically but indistinguishable quantum mechanically (Jauch, 1966), (c) same 
as (b) when the wave packets of the particles are overlapping; but identical 
particles are distinguishable also quantum mechanically when they are far 
apart or when there is some constant of the motion by which the particles can 
be distinguished (Schiff, 1955), (d) classically as well as quantum mechanically 
identical particles are distinguishable whenever the histories of the particles 
experimentally allow a distinguishing criterion (Mirman, t 973). 

Whereas Messiah (a) seems to use the concepts of identity and indistinguish- 
ability of particles in a tautological manner, the others go beyond this by 
trying to find a way to label or name the identical particles, thus trying to give 
each particle a kind of individuality that is maintained throughout time. Cases 
(b), (c), and (d) have in common that the labeling is thought to be performed 
by a dynamical variable or extrinsic property, the intrinsic properties of 
identical particles being the same. In classical mechanics generally the position 
variable will do, although Mirman notices some reservations also here, stemming 
from experimental inability to follow the continuous paths of particles when they 
are very close together. In quantum mechanics the absence of particle trajectories 
makes the position variable inappropriate for distinguishing purposes whenever 
the wave functions of the two particles are overlapping. This leads Jauch to the 
rigorous conclusion of indistinguishability, whereas Schiff points out some 
exceptions to this rule. According to the latter, two identical particles are 
distinguishable when the two-particle probability amplitude a(1, 2) of some 
dynamical variable is different from zero only when the two particles have 
their values in disjoint ranges of the spectrum of the variable. Note, however, 
that this can never occur when the wave function is (anti)symmetric, for then 
a(2, 1) = +-a(1, 2). 

In order to analyze the experimental meaning of the concepts of  identical 
particles and distinguishability Mirman (1973) considers two electrons in dif- 
ferent galaxies. A more common paradigm could be provided by the situation 
of two identical particles crossing a bubble chamber at the same moment with- 
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out colliding. When the particle energies are high enough we see two completely 
separated and distinguishable tracks. With Mirman these data seem to be suf- 
ficient to speak of two distinguishable particles: The particles are distinguished 
by their tracks. However, when the wave function is (anti)symmetric, this is 
clearly in conflict with Schiffs view, because in that case we cannot tell which 
of the two particles is in which of the two tracks. According to Schiff we could 
only speak of distinguishable particles when there is a one-to-one correspon- 
dence between each of the tracks and one of the indices 1 and 2 of  the two 
particles. It is clear from this that studying the experimental meaning of dis- 
tinguishability amounts to studying the experimental meaning of the indices 1 
and 2 of  the two particles. This can be done for classical and quantum mechanics 
simultaneously, because in the elementary forms of both theories these indices 
obtain. 

Since an index is thought to be independent of the state of the particle, it 
is to be considered as an intrinsic property. As a consequence of this, according 
to Jauch's definition particles that have different indices are not identical. By 
this reasoning the problem of distinguishability is defined away, because non- 
identical particles being distinguishable, this leads to the conclusion that the 
particles described by elementary classical and quantum mechanics are dis- 
tinguishable. However, this statement follows from purely theoretical con- 
siderations. So it tells more about the form of the theories than about the 
experimental meaning of the indices. The only conclusion we can draw is that 
the languages of elementary classical and quantum mechanics are those of  
distinguishable particles. Such languages are bound to be not very adequate to 
describe particles that are indistinguishable experimentally, which may be the 
reason for the different views on distinguishability found in literature. These 
languages would only be adequate when detectors were existing that are 
sensible to the indices. When this is not the case it is preferable to use languages 
that are independent of the indices, i.e. in which dynamical variables without 
experimental meaning like rj, the position vector of  particle j, do not show up. 
Such languages do exist for quantum as well as classical mechanics: quantum 
field theory (second quantization) and the classical limit of the field theoretic 
approach to statistical mechanics. Quantities that do have experimental meanings 
for particles without indices are, for instance, the probability P(ra)dr a of 
finding a particle in the volume element dr a near the space point ra, or cor- 
relation functions like P(ra, rb) correlating the probabilities of finding particles 
in space points r a and r~,. It is essential that the indices a and b do not refer to 
particles here, but to detectors at space points r a and r~. In this language the 
only relevant question is whether a detector has counted a particle or not, 
particle indices playing no role. Distinguishability now reduces to Mirman's 
purely experimental notion (Mirman, 1973), expressed by, e.g., the mutual 
distance of the two detector positions r a and r~ and the conduct ofp(ra,  rb) 
as a function of these parameters. This point of view seems to be consistent 
with the method Lyuboshitz & Podgoretskii (1969, 1971) use to treat the 
interference of nonidentical particles. 
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2. Experimental Relevance of Indices 

Apart from particle creation and annihilation, elementary quantum mechanics 
and second quantization are equivalent theories (Heisenberg, 1930). Also the 
classical theories of particles with and without indices are equivalent when only 
results are considered that are independent of the particle indices. 

As we saw, indices are to be considered as intrinsic properties. Then, using 
Jauch's definition of identical particles, particles that are identical in the un- 
indexed version of the theory are different in the indexed one. This is undesir- 
able because the theories describe the same set of experiments of the same set 
of particles. To overcome this difficulty we change the definition of identical 
particles slightly, making use of the observation that apparently the index does 
not have influence on the dynamical behavior of the particles. So particles are 
identical in both theories when we change the definition in the following sense: 1 

Two particles are identical if they agree in all their dynamically relevant 
intrinsic properties. 

This definition stresses the relevance of the set of  experiments considered, 
because intrinsic properties that are dynamically irrelevant with respect to 
some set of experiments may become dynamically relevant on extending this 
set. For instance, consider the set of all collision experiments performed with 
two billiard balls that differ only in color. Then color is a dynamically irrelevant 
intrinsic property a id  as such may serve as an index. The two balls are identical 
with respect to the set of collision experiments. However, when we extend the 
set of experiments to include also absorption and reflection of light, the two 
balls are no longer identical, for they will show up different dynamical behavior 
in absorbing and reflecting light. 

Besides showing the dependence of the notion of "'identical particles" on the 
experimental setting, the example reveals another aspect pertaining to the 
experimental meaning of distinguishing identical particles by indices: When 
particles are identical with respect to some set of  experiments they can only be 
distinguished by an index when it is possible to extend the set of experiments 
in such a way that the index becomes dynamically relevant with respect to 
some new property. When such extension is impossible or unknown the index 
does not have any experimental relevance in distinguishing the particles. In 
this case only Mirman's criterion remains. This seems to be the situation in 
elementary particle physics. However, this is not a reason to deny all physical 
relevance to the indices of the particle variables obtaining in elementary quantum 
mechanics. As we saw, distinguishability by means of indices is based on in- 
completeness of the description of the dynamical behavior of  the particles. 
Then, the mere possibility of an indexed-particle language is an indication that 
there might be some new field of research connected with these indices. 

1 I t  wilt t u r n  o u t  t o  b e  e s sen t i a l  t h a t  t h e  d e f i n i t i o n  a lso  c o n c e r n s  par t ic le~  t h a t  a r e  n o t  
e l e m e n t a r y .  
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Some evidence in this direction could be provided by the problem of a 
dynamical description of the process of (anti)symmetrization of the wave 
function when two identical particles approach each other from great mutual 
distance (Mirman, 1973). As Mirman stipulates, when two identical particles 
are created simultaneously at great distance from each other, immediate 
(anti)symmetry of the two-particle wave function would violate causality. 
This shows the necessity for studying this (anti)symmetrization process, which 
cannot be done using existing quantum field theories, because these are con- 
structed as causal theories that do correspond to immediate (anti)symmetry 
of the wave function. 

There exists at least one physical situation in which different symmetries of  
the wave functions of initial and final states are necessary to describe experi- 
mental evidence. It is not surprising that this situation, viz., that illustrating 
the famous Gibbs paradox,has been connected with the problem of distinguish- 
ability of identical particles for quite a long time (e.g., Schr6dinger, 1957). 
One considers an ideal gas of N identical particles in volume V, initially divided 
by an impermeable diaphragm in two parts A and B having the same tempera- 
ture and pressure. When the diaphragm is removed, entropy, being an extensive 
property, should behave in such a way that the entropy of the combined final 
state should equal the sum of the entropies of parts A and B in the initial state. 
From the quantum mechanical definition of entropy 

S = - k  Tr p in p (2.1) 

resulting in the Sackur-Tetmde expression (Schr6dinger, 1957) for systems in 
thermal equilibrium, it can be seen that this is satisfied when the density opera- 
tor of the initial state obeys 

P = PA PB (2.2) 

whereas the final state should be totally (anti)symmetrized. The density 
operators PA and PB are thought to describe the subsystems A and B and 
correspond to (anti)symmetrized states of these subsystems separately. 

When the particles of A are different from those o r b  a diffusion process is 
started by the removal of the diaphragm, resulting in a homogenous mixture 
of the two gases. When the particles in A and B are identical this diffusion 
process is often considered to be unnoticeable or even unreal (Schr6dinger, 
1957). This paradoxical situation might be resolved when the particles are 
indexed partides. Then the diffusion process is as real as in the case of dif- 
ferent particles. Moreover, when the (anti)symmetrization process is considered 
as a description of this diffusion process, it is not even unnoticeable since it 
dearly substantially influences the state of the total system. 

The relation to distinguishability by means of indices comes into play through 
equation (2.2). Here A and B are indices, not of particles, but of assemblies of 
particles (they correspond to particles when A and B contain one particle each). 
The possibility of introducing density operators of well-defined subsystems A 
and B in the theoretical language is clearly related to the fact that the particles 
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of subsystem A are distinguishable experimentally from those o f subsystem B 
as long as the impermeable diaphragm is present. So A and B are distinguishing 
indices, corresponding to the regions to which the subsystems A and B are con- 
fined experimentally in the initial state. 

In the indexed language 

P.4 = TrBP, PB = TrAp (2.3) 

where TL4 , Tr B means partial tracing over the particles contained in A, B. The 
question of distinguishability of the two subsystems by the indices A and B 
after removal of  the diaphragm is connected with the feasibility of expressions 
(2.3) in this latter situation. It is often stated that there exists a causal relation- 
ship between indistinguishability and (anti)symmetry of the wave function. If 
this were true, the indices A and B would loose their meaning in the process of 
(anti)symmetrization. However, we will see in the next section that the causal 
relationship mentioned above does not exist. This will remove (anti)symmetry 
of the wave function as an a priori obstacle to distinguishability of the two 
subsystems by means of the indices A and B, also in the final state. 

The experimental distinguishability of systems A and B by the indices A 
and B in the initial state is based on the one-to-one correspondence of some 
intrinsic property of the systems with positions of the particles. This corre- 
spondence is lost in the final state. Because in the diffusion process experimental 
distinguishability in the sense of Mirman by, e.g., the positions of the particles 
breaks down, only the yet unknown property is left to distinguish A and B. It 
is possible to ignore this property and to leave it completely outside the theo- 
retical language. However, in acting this way we may neglect some phenomena 
that seem to be not devoid of physical relevance. 

3. Indistinguishability and "Statistics" 

As we saw in Sec. 1 the language of the elementary wave mechanics of wave 
functions 2 ff(x 1, x ~ , . . . ,  Xn) is a language of distinguishable particles. Although 
it is not impossible to stick to this description when the indices are thought to 
be physically irrelevant, some extra care is needed. One instance where this 
becomes apparent is provided by the attempt to derive (anti)symmetry of the 
wave function ("statistics") from indistinguishability, made in some textbooks 
(e.g., Landau & Lifshitz, 1965; Blokhintsev, 1964). The reasoning is as follows: 

Consider the expectation value 3 of, e.g. 4 the observable f ( x  1,. •., Xn), 

 I(Xl . . . . .  x,,) =.IdXl . . .   dxj(xl, . . . . . , x , ) l  (3.1) 

Becasue of indistinguishability of the particles the following equality is 
postulated 4 : 

( f ( x 1 ,  • • . ,  Xn) ) = ( f (P (x  1 . . . . .  Xn) )) (3 .2 )  

z xi = (r/, #]), #] being the spin variable of  particle j. 
3 ydx] stands for integration over the space variable and summation over the spin variable. 
4 The same should be done with functions of  momentum or any other one-particle 

observable. 
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P(x l . . . . .  xn)  being an arbitrary permutation of (x I . . . . .  xn). When (3.2) 
should hold for any function f,  the equality inevitably leads to 

I~(P(xl  . . . . .  xn))  12 = I ~(xl ,  • -., xn)12 (3.3) 

which implies symmetry or antisymmetry of the wave function. 
But as the particles are presupposed to be indistinguishable (at least by way 

of indices) not every observable f ( x  I . . . . .  xn)  has physical significance. Only 
those observables that have a counterpart in the unindexed theory should be 
considered in (3.2). This being precisely the class of totally symmetric functions 
for which 

f ( P ( X l , . . . ,  X n )  ) = f ( x  l ,  . . ., X n )  (3.4) 

equation (3.2) is fulfilled trivially for any wave function. So indistinguishability 
by indices does not lead to any requirement on the form of the wave function. 

On the other hand, when the particles are thought to be distinguishable by 
their indices, we have no reason to expect equality of, e.g., the expectation values 
(r~) and (r2) of the position variables of two identical particles 1 and 2 for all 
possible states of the system. As we saw in Sec. 2 it is possible then to prepare 
states in which the particles 1 and 2 are in disjoint regions of space, tt follows 
that in this case the requirement (3,2) is not legitimate. So, also from this point 
of view (anti)symmetrization of the wave function is not invoked. 

A derivation of (3.4) is given by Schweber (1961), starting again from (3.2), 
which is required by indistinguishability of the particles. It is interesting to 
note that (3.4) only" follows from (3.2) when this last equality should hold for 
all functions ~(x 1 . . . .  , xn).  When only symmetric or antisymmetric wave 
functions would play a role in the physics of identical particles, it would be suf- 
fieient to consider (3.2) for states corresponding to this class of functions only. 
But under this circumstance (3.2) is satisfied for any observable f ( x l , . . . ,  xn). 
So, in order to arrive at (3.4) as a necessary condition the observables of a 
system of identical particles should obey, it is essential that non- (anti)symmetric 
wave functions have experimental pertinence. But this implies that the whole 
reasoning breaks down because, as we saw in Sec. 2, in this case the indices may 
have an experimentally relevant distinguishing function. 

We arrive at the conclusion that a fundamental relationship between 
"statistics" and indistinguishability by means of indices of identical particles 
is not evident. 

Note that this conclusion is not at variance with the example given in 
Sec. 2, where departure from "statistics" involved a kind of distinguish- 
ability. As a matter of fact, this distinguishability (the Schiff version) was 
arrived at through position measurement, not through direct observation of 
some physical property corresponding to the index. The one-to-one corre- 
spondence between position and index obtaining here is a very special circum- 
stance, not liable to be a general issue: Deviation from "statistics" is not bound 
to imply this distinguishability by indices. The intermediate states in the dif- 
fusion process described in Section 2 might furnish illustrations to support this 
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view, provided the state function (or density operator) of the system evolves 
in a continuous fashion from initial to final state also in this case. 

"Statistics" not being related to (in)distinguishability, it should be possible 
to describe this process using either an indexed- or an unindexed-particle 
language. However, viewed as a diffusion process, an indexed-particle language 
may describe it in a conceptually simpler manner than an unindexed-particle 
language. This is the case because now (anti)symmetry of the wave function 
of, e.g., two identical particles can be interpreted in a simple way by stating 
that, after the diffusion process has reached its state of equilibrium, the equality 

I ~)(Xa, Xb)12 = I~)(Xb ' Xa ) 12 

expresses the equality of the probability of finding particles 1 and 2 with co- 
ordinates x a and x b, respectively, and the probability of finding the particles 
with their positions and spins exchanged. 

By the diffusion process an initial state of two uncorrelated systems ]e.g., 
with density operator (2.2)] is turned over into a final (equilibrium) state in 
which the systems are correlated. It is preferable to describe this correlation in 
the unindexed language, i.e., by means of the commutation relations of the 
field operators of quantum field theory, because it is not a correlation of the 
indices  (which seem to be distributed as randomly as possible in the equilibrium 
state), but of the probabilities of finding particles in different points of space 
(cf. Sec. I). However, the theories being equivalent, the correlation should also 
be expressible in the indexed language. 

A fundamental relationship between "statistics" and indistinguishability by 
means of indices not being evident, we have to consider the tendency of an 
assembly of identical particles to develop its state into a state showing a specific 
kind of correlation (either Bose-Einstein or Fermi-Dirac "statistics"), as an 
independent and fundamental property of the particles. Approaching "statistics" 
in this way offers a big advantage in understanding in statistical mechanics the 
factor N! by which the a priori probabilities should be divided in order to get 
the (correct) Boltzmann weights (e.g., §4.2 of ter Haar, 1961). It is often 
stated that this correction is really a quantum mechanical effect because only 
here would indistinguishability of identical particles have an experimental 
meaning (however, see Rushbrooke, 1949). In quantum mechanics the factor 
AO. turns out to be a consequence of the restriction to (anti)symmetric states, 
i.e. to corre la ted  states. But correlation is not a typically quantum mechanical 
notion. We have no reason to suppose that this property gets lost in the clas- 
sical limit. So we have the possibility o f attaining the factor N! also classically, 
when we postulate also for classical mechanics that identical particles are 
necessarily corre la ted  particles (at least at equilibrium). In fact this is equiva- 
lent to the replacement already performed by Gibbs, of "specific phases" by 
"generic phases." (Gibbs, 1902). No allowance has to be made for indistinguish- 
ability of states under exchange of particles in phase space when this "statistics" 
correlation is considered also in classical mechanics as a fundamental property 
of systems of identical particles. Apart from procuring the factor N! in classical 
mechanics, "statistics" correlation of the particles does not seem to have con- 
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sequences. This is illustrated by the vanishing in the classical limit of all inter- 
ference terms brought forth by (anti)symmetry of the wave functions, making 
expection values coincide with those obtained from unsymmetrized.wave 
functions. So it is possible to continue using the conventional classical mechanics 
of uncorrelated particles, as the "statistics" correlation manifests itself only on 
the quantum level. 

4. A Field Theory o f  Indexed Particles 

Elementary quantum mechanics is not unconditionally the indexed-particle 
version of quantum field theory, since particle creation and annihilation is not 
described by the first theory. In this section we will present afield theory of 
indexed particles, i.e., a theory by which it is possible to describe creation and 
annihilation of indexed particles. In order to perform ttfis extension of quantum 
field theory, we start from the very clear formulation of this theory given by 
Robertson (1973). In the unindexed-particle theory a system o f N  bosons or 
fermions is represented by a state vector in Fock space ItIt N ) which is related 
to the (anti)symmetric wave function ~s(X 1, • . . ,  XN) through the formula 

I ~ N )  = ( N [ ) - l / 2 f d x 1 "  " f d X N q J s ( X l ,  . . . ,  X N ) ~ t ( X N )  " " " ~ t ( X l ) [ O )  

(4.1) 

Here ~*(x)[~(x)] is the usual creation (annihilation) operator of an unindexed 
particle at x, obeying the commutation relations for bosons c.q. fermions 

[~(x), ~(x')] ,  = o 

[~(x), C*(x')] ,  = ~(x - x ' )  

1o) is the vacuum state, defined by 

g,(x)  Lo> = o 

(4.2a) 

(4.2b) 

(4.3) 

It is shown by Robertson (1973) that the wave function ~s(x  1 . . . . .  XN)  iS 
obtained from the Fock state (4.1) through 

t I t s (X  1 . . . . .  X N )  = (AT!) -1/2 (Ol@(Xl)  • - • I~)(XN)[ xI/N) (4 .4)  

We point out here that (4.t)  is not a unique expression for the state vector 
ptS@. We may replace the function qss(x 1 . . . . .  XN) in the integrand of (4.1) 
by an arbitrary function g'(x t . . . . .  XN) obeying 

xIts(x 1 . . . . .  Xu)  : ( l /N!) ~ e-P~(P(xl . . . . .  XU) ) (4.5) 
P 

the summation being performed over all permutations of (x~ . . . . .  XN); for 
bosons e p = +1, for fermions e p = +1 or -1  when the permutation Pis  even or 
odd. The result (4.4) is independent of the specific form of [kit N ) as  long as 
tP(x 1 . . . . .  X N) obeys (4.5). 

It is not possible to construct a complete description of indexed particles 
using just a single field operator tk(x). When all particles have different indices, 
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a different field operator ~ ( x )  has to be associated with each particle. We will 
call this operator an indexed field operator. The vacuum state, which is as 
usual defined by 

~i(x)lo) = 0, Vi~ x (4.6) 

is the direct product of the vacuum states Ioi> of all particles contained in the 
system under study (index set/). 

We will restrict our attention here to systems in which the particles are all 
characterized by different indices, although this may turn out to be too 
restrictive, as is shown by the example of  Sec. 2, where all particles of sub- 
system A or B may be thought to have the same index. However, field operators 
~A (x)[~B(x)] describing the fields of the A(B) particles are related to the 
one-particle field operator ~Oi(x ) in the same way as the unindexed field oper- 
ators ofboson and fermion fields. Since in Sec. 6 we shall find the relation 
between indexed and unindexed field operators, we do not need to study 
many-particle field operators like ~A (x), which moreover seem to be less 
fundamental from the point of  view of distinguishability. 

We define the state vector corresponding to a system of N differently indexed 
particles with wave function ~s(x  ~ , . . . ,  XN) by analogy of (4.1) as 

[ tlb'l . . . . .  N)  = f d X l " ' "  fdXNtIIs(X1 . . . . .  XN)@~C(XN)' '" ~J  (x,)lo > 

(4.7) 

We also require that the wave function is found from [tIq . . . . .  N > through 

XI/s(X 1 . . . . .  XN) = ( O I ~ I ( X 1 )  " " " ~JN(XN) ItIff 1 . . . . .  N ) ( 4 . 8 )  

In (4.1) the "statistics" correlation of the particles is incorporated in the 
state vector in two ways: by the commutation relations of the field operators 
and by the symmetry character of the function ~s(xl  . . . .  , XN). We have seen 
that the first one is sufficient to give the right "statistics." In the formulation 
we develop in this section we will choose the second manner, i.e., we introduce 
"statistics" in the state vector (4.7) by means of the symmetry character of the 
function tPs(x 1 . . . .  , XN). By doing so the possibility is created of a uniform 
description, independent of "statistics," of  the indexed particles, be it bosons, 
fermions, particles obeying parastatistics, or even particles with no correlation 
at all. The commutation relations of the field operators ~i(x), etc. may be the 
same in all cases. 

Since for uncorrelated particles no symmetry requirements are to be imposed 
on the function ~')s(xt . . . . .  XN) in (4.7) and (4.8), it follows that 

N 
< O [ ~ I ( X l )  " ' ' ~ N ( X N ) ~ . t N ( y N )  " ' ' ~ l t ( y l ) l O )  = 1 ~  6 ( x i - - Y i )  

i = 1  

(4.9) 
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Another aspect of applicability of the theory to uncorrelated particles is ex- 
pressible by the property that indexed field operators with different indices 
commute. Thus 

[~i(x), ~j(y)] _ = [¢i(x), ~T(Y)] - = 0, i 4=] (4.t0) 

It incidentally follows from (4.6) and (4.10) that 

~i (X) tXI - r  1 . . . . .  N>=0, i $  (1 . . . . .  N} (4.1t) 

which is a most desirable result. 
A third requirement for the indexed field operators is suggested by a relation 

that is equally valid for bosons as well as fermions, viz., 

g,(x)**(y) 1o) = ~(x - y)Io)  

As this clearly is independent of "statistics", we expect that it should hold 
also for our indexed field operators. So we require 

l~ i(X)~l ti (Y)  [O ) = 6(X - - y ) [ o )  ( 4 . 1 2 )  

As the equality (4.9) is a direct consequence of (4.10) and (4.12), we may 
omit the requirement (4.9). The one- and two-particle operators corresponding 
to the configuration space operators Ti(xi) and Vq(x i, x/), i 4=] are also 
defined by analogy with quantum field theory, as 

Ti = f dx~ ti (x)Ti(x)~i(x) (4.13a) 

(4.13b) 

Note that in quantum field theory, because of the presupposed indistinguish- 
ability of the particles, only operators are considered corresponding to 
observables that are symmetric in the particle indices, such as 

N 

E 5(xi) 
i = 1  

and 
N 

Vi](Xi, X]) " 
i , j= l  
( i~ j )  

With (4.13a) and (4.13b) it is quite easy to show that (4.10) and (4.12) are 
sufficient for the equivalence, under the correspondence defined by (4.7) of 
the configuration space representation [by wave functions '~s(x 1, • •., XN)] 
and the representation by state vectors ]qq . . . . .  N). For all kinds of "statistics" 
this equivalence is expressed by the equalities 

. . . . .  N l * ,  . . . . .  . . . . .  X , v  ) * s ( x  l . . . .  , x , , , )  (q'l 

(4.14a) 

((I)1 . . . . .  N ]T i[ xI'rl . . . . .  N } =j ' dXl"" '  fdXNeP*(Xl . . . .  , XN)Ti(xi)~'rs(Xl . . . . .  XN), 

i E { 1 . . . . .  N} (4.14b) 
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(~i ..... NI Vi/l'lq ..... N> 

= f  d x ,  " " ~ dXNrb*(x,  . . . . .  XN)Vq(x i ,  x / ) ~ s ( x  , . . . . .  XN),  i ,]  E {1 , . . . ,  N} 

(4.14c) 

From (4.11) it is immediately seen that Ti I ~ 1 . . . . .  N ) and Vi/1 q* l . . . . .  N ) 
vanish when particle i or ] is not present in the system described by t qq . . . . .  N ). 
Also, the equivalence of the SchrSdinger equation of a system of N indexed 
identical particles 

H ( 1 , . . . ,  N) I'Iq . . . . .  N } = i h ( d / d t ) l q * l  . . . . .  N ) (4.15a) 

H(1 . . . . .  N) = Ho(1 . . . . .  N)+ V(1 . . . . .  N) 

= i= l  OdX~y-(X) 2M A + V(x)  ~ , (x )  

N 
: (4.1Sb) 

+½ i, j= I 
i= /  

with the usual non-relativistic equation in configuration space, is easily derived. 
To conclude this section we mention some further properties of  the indexed 

field operators. From the physical interpretation of the operator ~ i ( x )  as an 
operator describing a field of only one particle, it follows that 

i(x) ~ i 0 ' )  = 0 (4.16) 

In order to study the commutator of ~/(x) and ~/?(y) we switch in the usual 
manner to a discrete representation: 

~ i ( x )  = E a f u k ( x )  (4.17) 
k 

where {Uk(X)} is some complete orthonormal set of one-particle functions. 
Then a k (af t )  is the annihilation (creation) operator of particle i in the state 
with wave function Uk(X). Inserting (4.17) into (4.10), (4.12), and (4.16) we 
get 

k l _ a k, at?- [a i ,a )]_-  [ i ] 1_=0, i4=] (4.18a) 

afa~*io) = 5kllO) (4.18b) 

a~a~ = 0 (4.18c) 

When we introduce for the one-particle state of particle i with wave function 
~I',(x) = Uk(X ) the notation 

Iki) = a k? Io> (4.19) 

we conclude from (4.18b) that a~ may be represented by 

a~ = Ioi)(kil  (4.20) 
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From (4.20) we easily derive that 

[~i(x), ~ ( y ) ]  = 8(x-y)[oi><oi[-~?i(y)Loi><oi](ai(x) (4.21) 

and 

[~i(y) ,  ~ti(x)~i(x)] - = 6(x - y)~i(x) (4.22) 

which may be used to find the equation of motion of ¢i(x) in the Heisenberg 
picture with the Hamiltonian (4.15b) as 

ih ~l i(x)  - [-- - ~  A V(x) ] ~i(x) 

N 

+½ tOi(x ) ~ fdy[V(x ,y )+  V(y,x)]~} (y)t~](y) (4.23) 
j = l  

(j~i) 

It is also easily verified that the operator 

Ni = fdx~?i(x)t~i(x) = ~ a~ta~ (4.24) 
k 

commutes with the Hamittonian (4. t 5b), expressing conservation of the prob- 
ability that particle i is present in the system described by this Hamiltonian. 
The operator corresponding to the number of particles with state function 
Uk(X ) is given by 

N k :  ~ a~ta~ 

since 

NXa~ 't  " " " a~Nt [o>=nka~ , t  " " " k.Nt (4.25) ai~ Io> 

n k being the number of times k is represented in k t . . . .  , kN. The operators 
N k are defined on the Hitbert space of indexed particles, in which the vectors 

a~ ' t ' ' "  a~Ntlo>, N = 0, 1, 2 . . . .  i]eI, ij ~ ik, constitute an orthonormal basis. 
The operator corresponding to the total number of particles now follows from 
(4.24) and (4.25) as 

.A/" = ~ Ni = ~ N k = ~ a~ta~ (4.26) 
i k ik 

For the Hamiltonian (4.15b) we arrive in the k representation at the expression 

N . . o  k t  1 -  1 N V _ k t  I t rn n 
H ( 1 , . . . ,  N) = ~ E rZiclai ai * ~ ~ ~ v k l m n a i  a] a] a i 

i = 1  k l  i, ] = l k l m n  
(i 4= j) (4.27) 

] - - - ~  + V(x) re(x) 
2M 

= (dxfdytl~c(X)u~(y)V(x , Y)UmQY)Un(X) Vkl~. j j -  



340 W. M. DE MUYNCK 

Mirman (1973) strongly opposes against what is called "physical exchange of 
particles," in which two particles change places. Indeed, in a theory of indis- 
tinguishable particles this notion makes no sense at all as it is then thought to 
be impossible to distinguish experimentally between the original state and one 
in which the particles have been exchanged. In a theory of  indistinguishable as 
well as distinguishable particles an interaction is needed to perform the ex- 
change. However, in an indexed-particle theory a new possibility opens up 
for interpreting the "physical exchange of particles" that avoids the difficulties 
connected with the more or less mysterious way in which two material particles 
should be able to exchange their places. For, if not the particles themselves, 
but just their indices  would exchange, the final state could not be distinguished 
experimentally from a state that results from a real physical exchange of the 
particles, included indices. So an interaction that exchanges just the indices 
could be interpreted as an exchange interaction. 

However, when index exchanging interactions are present it is no longer 
possible to use this index for distinguishing purposes. As a matter of fact pre- 
cisely the presence of this kind of interaction would give the index the status 
of a dynamical variable. So a theory of distinguishable particles is possible 
only when the interactions are index preserving. The Hamiltonian (4.15b) 
clearly is of this kind as 

(o I ~ i ( x ) ~ j ( y ) V ( 1  . . . . .  N)qJ~(x)~/t(y)lo> = O, x :/=y 

5. I n d e x e d  B o s o n  Operators  

In order not to be bothered by phase conventions, in the following we 
restrict our considerations to bosons. Using the indexed particle operators 
defined in (4.18) and (4.20) a normalized symmetric state of N indexed 
bosons may be represented by 

1il " " " i N ; k l  " " kN>s = { U ! I l k n k ! }  -1/2  ~ ~ k , t .  . . a~i~Nt[o> (5.1) 
P 

Again nk is the number of times the single particle state k occurs among kl ,  
. . . .  k N ;  further P k l ,  • • ", P k N  stands for the permutation P(kl ,  " " ", kN). It is 
possible (Jauch, 1966) to define a projection operator on the Fock space of 
symmetric states, IIs, according to 

I][~I t • . _.XNt • u i i  ¢ o> = ( N ! ) - l / Z ( I l g n k ! ) l / 2 l i a  " "" iN;  k x " "" kN> s (5.2) 

This projection operator is expressible explicitely in the indexed field operators 
following 

IIs= ~ ~ ~ (N!lltcnk[)-' ~ ~ q ~ t ' ' ' 4 N N t I ° > ( °  a Q k N ' " N  ai,Qk~ 
N = O  i1" ' ' i  N £nk} P,Q 

(s.3) 

In (5.3) the summation over i l ,  • • . ,  iN is extending over all possible sets of N 
different indices. 
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The operators 

sb~ = YIsa~IIs (5.4a) 

sbl[ ? = tlsa~tl]s (5.4b) 

are easily verified to possess properties that are analogous to those of the 
usual annihilation and creation operators of unindexed bosons, viz., 

. . .  iN; k l  • . .  k N  )s = ( N ! ) l l 2 ( [ I k n k  ! ) - l / 2 sb~ ,?  . . . .  k N t  Iq s%V o) (5.5) 

sb~[il " " " iN ; k l  " " " kN )s = P i n k t / 2 N  -1/21il "" " i " " " iN ; k t " "" f." "" kN)s  

(5.6a) 
sb~t l i l  " ' "  iN;k1  ' " " kN)s  

=(1 - - p i ) ( n k  + 1)l/2(N+ 1)-1/21i I " ' ' i N i ; k  1 " " k N k ) s  (5.6b) 

where 

1, i E  {i l  "" "iN} 

P i=  O, i~ f  { i t  " iN} 

The equalities (5.5) and (5.6) lend support to the interpretation of the 
operators sb~ and sbf*  as annihilation and creation operators of an indexed 
boson. Contrary to the creation and annilation operators defined in Sec. 4, 
they pertain to particles correlated according to "statistics." Yet they have a 
wider scope then the creation and annihilation operators of unindexed field 
theory, as the operators (5.4) are also defined outside the Fock space of 
symmetric states. However, since they are adapted especially to this space, it 
is questionable whether a physical meaning can be attributed to these operators 
outside the Fock space of symmetric states. For this reason we will only study 
their behavior on this latter space. The commutation relations of the operators 
sb~ and sb~ t are easily derived from (5.6) in this case. We get 

[sb~, sb~]_ = [sbf t,  ~bfl_ = 0 Vijkl (5.7) 

which relations are even valid outside the Fock space of symmetric states. The 
commutation relation [sb~, shoe] is rather a bulky expression which we shall 
not write down here. 

In order to arrive at a dynamical description of a system of indexed bosons 
by means of the indexed boson operators, we mention the equality 

akilil "" " i N ; k  I "" " k N } s = s b ~ l i l  "" " i N ; k l  "" "kN}  s (5.8) 

(note that there does not exist an analogous equality for the creation operators). 
Replacing in (4.27) the operators a/k etc. by their symmetrized counterparts, 
we may define the Hamiltonian operator 

N 
sH( 1 . . . . .  PO = 2 X HOt sb~ ? sb~ + ~ 2 ~, Vktrnn sb~ t sbt¢,i sb]m sb7 

i =1 kl i , j  =1 klmn 
(i ~ ]) (5.9) 
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With (5.8) it is then easily seen that 

s(1 "" " N; k t " " " k N [ s [ / ( 1  . . . . .  N)[1 "' " N ; I  1 " ' ' I N )  s 

= s(1 "" " N ; k  I " ' ' k N l Y ( 1  . . . . .  N)tI  "" "N; I  1 " ' ' l  N )  s (5.10) 

So, on the Fock space of symmetric states we have 

a.H(l . . . .  ,N) = H(1 . . . . .  N) (5.11) 

from which we conclude that (5.9) is the Hamiltonian of a system of N indexed 
bosons. By the substitution a~ -~ sb~ also the number operators defined by 
(4.24), (4.25), and (4.26) are turned over into the corresponding number 
operators of indexed bosons. 

The operator sb~ t is, unlike a~ t ,  not simply interpretable as the creation 
operator of a particle with index i in single particle state k. This is most clearly 
illustrated by the equality 

hkt #t_ hkt  hlt 
s~i sUj - s~i s~i (5.12) 

which follows from the symmetry of the vectors (5.5). Equation (5.12) reflects 
the facts that bosons are correlated particles and that the notion of  single 
particle states has a limited meaning for such particles. For, although the 
operator sb~ t adds a particle with index i and a single-particle state k to the 
initial state, because of the correlation in the final state particle i is not bound 
to be found in state k. 

6. Relation to Unindexed Boson Theory 

In order to be able to compare the indexed boson formalism with the usual 
formalism of "indistinguishable," unindexed bosons (4.1)-(4.3) it is necessary 
to remove the restriction in (5.9) on the summations of i and ] to a specified 
number of particles. We therefore replace (5.9) by the Hamiltonian 

¢I= g E *,kt svi sb~ + ½ Y. ~ Vklmn sb k? sb~ ? ,bt~ sb7 (6.1) 
i kl i, j klmn 

(i ¢ ] )  

where the summations of i and ] now extend over the whole set I of the particle 
indices. The Hamiltonian (6.1) has the desirable property that its matrix elements 
between state vectors not belonging to a definite number of particles, of the 
form 

i l . , .  • 
[~{i})= Z Z e { n k } ' N l i l " ' ' i N ; k l " ' ' k N ) s  (6.2) 

N £nk} (Znk=N)  

are equal to those of the unindexed boson Hamiltonian 

H =  ~ o t t t H~lakal + 1 ~ (6.3) Vklmnakal  aman 
kl klmn 
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I~P) = ~ C{nk}t {nk}) (6.4) 
{"k} 

provided corresponding coefficients in (6.2) and (6.4) are identified, i.e., 
when we put 

i' " " iN (6.5) c{.k} = c{.k} 

then 

(~IHI~I,> = (~{i}lsH[eb£i}) (6.6) 

We note that the equality of the matrix elements of i f /wi th  those of H is 
independent of the choice of the indices in (6.2) as tong as (6.5) is satisfied. 
A second remark amounts to the observation that the state vectors (6.2) do 
not contain linear superpositions of states with an equal number o f particles 
but having different indexations. This restriction is reasonable within the theory 
expounded here, since the indices are considered to be intrinsic properties of 
the particles and so there should obtain a superselection rule regarding these 
properties. This aspect is very important in tracing the relation between the 
indexed and unindexed operators a/k and a k. Indeed, on behalf of this super- 
selection rule an identification o fa  k with Eia ~ as is suggested by (6.1) is ruled 
out. Apart from this argumentation, introduction of  this identification in (6.3) 
gives rise to matrix elements of which the potential energy part differs from 
that given by (6.1) by a factor of 2. It may also be verified that the matrix 
elements of E ia~ do not equal those of the unindexed boson operator calculated 
in states connected by (6.5), but that the matrix elements of the operator 
E ia~ j~t/2 do (analogously for the creation operators). However, the physical 
meaning of  this operator is not clear. 

From the foregoing it follows that the results of "indistinguishable" un- 
indexed boson theory should be recovered by application of classical ensemble 
theory as far as the indices are concerned. To this end we introduce in the 
Hilbert space of symmetric indexed particle vectors (6.2) equivalence classes 
of state vectors in such a way that state vectors differing only by the indexation 
of the particles belong to the same class. Such a class is then represented by the 
unindexed state vector (6.4), C{nk} being given by (6.5). A transition between 
two unindexed particle states I qO and 1~), specified by the transition amplitude 
(~lqO is now represented in the indexed-particle formalism by a transition 
between the corresponding equivalence classes, specified by the amplitude 
(~{i} I ~I'Q})averaged over the different possible indexations within the 
equivalence classes. 

Because of  the different meanings of the operators a/x and a k it is not possible 
to recover the matrix elements ('Is laklq~) by simply averaging the corresponding 
indexed-particle matrix elements. Indeed, in interpreting the annihilation of 
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an unindexed particle in terms of  indexed particles whose indices remain un- 
observed, we should realize that each of  the particles that are present in the 
initial state has a probability of  being annihilated. The sum.of these probabilities 
should equal the probability that a particle (no matter  what is its index) is 
annihilated. This picture is in agreement with the equality 

l({nk}',  nk -- 1 lakl {nk})l 2 = nk  = N ( n k / N )  

=Yls ( i l  " " 4 ' ' ' i N ; k l  " '"  I~ " " " kNla~ lia " ' ' i N ; k 1  " ' "  kN),[ 2 
i 

(6.7) 

A similar argument obtains for creation operators and for arbitrary products 
p({a~}, {at}) o f  creation and annihilation operators. 

Thus for instance for k 4= l 

nknl  
[({nx}', nk - 1, n t - 1 [aga/[ { n k } ) [  2 = nknt  = N ( N -  1 ) N ( ~  - 

1) 

= .~. ts( i  1 "" " i ' "  " 4 " "  i N ; k l  "" " g " ' t ' " k n [ a ~ a ~ [ i t  " ' ' i N ; k 1 " ' "  k N ) s t  2 

" '  (6.8) 

Here N ( N -  1) is the number of  different ways in which two indexed particles 
may be annihilated from a system of  N indexed particles. Note that the order 
in which particles i and j are annihilated is relevant, giving rise to two different 
transition processes. 

It  does not seem possible to relate directly the ampl i tudes  of  the indexed- 
and the unindexed-particle theories in a way consistent with the interpretation 
given above, because of  the appearance of  the factors N - l / 2  expounded in 
(5.6). Since amplitudes do not have physical relevance, this does not  have con- 
sequences in the cases studied above. However, when we try to generalize the 
foregoing to matrix elements between arbitrary state vectors, we arrive at the 
conclusion that this can only be done when one of  the vectors has a definite 
number of  particles. Thus 

I('~'N IP((aet}, (a/})lq~)[ 2 = ~ [ (q l i l . . .  iN[P({akrt}, {a/})[q~(i})] 2 

{r), {s) (6.9) 

When both vectors have an indefinite number of  particles the indexed- 
particle probabilities differ from the unindexed-particle ones as may be seen 
from the following simple example. With 

I':b) = a 11 {nk}) + b a I {mk} }, l ff') = a2l {ng}', nk -- 1 } + b2 t {mt~}', mk -- 1 ) 

N = ~ n k  < M = ~ m k  
k k 

we get 

i(qblakt~)l 2 = la~a2x/n k + b ~ b 2 x / m k t  2 (6.10) 
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~ l (q~{i } la~ 1 ff'{i })12 = Nla~a2 x/(nk/N) + b~b2x/(mk/M)i 2 
I 

+ (M - N) lb~b2x/(mk/M)12 (6.11) 

which is different from (6.10) when M 4:N, the difference being proportional 
to (N/M)1] 2 - 1. 

The discrepancy between the indexed- and unindexed-particle theories found 
here could be used to test the applicability of the theories. For this it is essen- 
tial to consider transitions in which both initial and final states are coherent 
superpositions of  states with different numbers of particles. 

7. Comparison with an Earlier Theory 

By Marx (1972) creation and annihilation operators have been introduced 
of "numbered" bosons and fermions. The creation operator numbered] is 
defined in such a way that the (anti)symmetric state vector in (generalized) 
Fock space containing particles numbered 1, 2 . . . . .  ] - 1, j + 1 , . . . ,  N is 
turned over into a state vector of the same symmetry character with particles 
numbered 1, 2 , . . . ,  N. Analogously the annihilation operator numbered j 
destroys a particle with this same number, maintaining the symmetry character 
of the state vector. In view of (5.6) the creation and annihilation operators of 
numbered particles show at first sight some resemblance to the indexed-particle 
operators defined by (5.4). The numbered particle operators of Marx refer to 

correlated particles, as do the operators sb~r  and sb~. Apart from this similarity 
the two kinds of operators are quite different because of the different meanings 
of "numbering" and "indexation" of  particles. These differences are for instance 
reflected by the commutation relations of the operators, which show quite a 
different behavior. 

In Section 2 we defined the particle indices to be intrinsic properties of 
the particles.. As we saw at the end of Sec. 5, we then cannot interpret the 

operator sb~ T as the creation operator of a particle with index i in single 
particle state k. As Marx defines his numbered particle operators precisely 
according to this interpretation, we may conclude that his numbers cannot 
be intrinsic properties of the particles. This conclusion is confirmed by the 
commutation relations the numbered particle operators obey [Marx, 1972; 
Equations (2.6)-(2.10)]. These relations show a dependence of the numbering 
of the particles on the order in which two particles are created or destroyed 
successively in two different single-particle states. This could never be the 
case if the numbers represented intrinsic properties of the particles. In fact, 
the results of the numbered-particle theory of Marx are compatible with an 
interpretation of the numbering as a numbering of occupied single-particle 
states, rather than as an indexation of the particles. This means that "particle 
j "  refers to the particle that is attributed to the ]th occupied single-particle 
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state. Thus, when a particle is added in some single-particle state, all particles 
that were already present in states with a higher ordinal number should be 
renumbered ]-->] + I. This clearly shows the difference between particle 
numbering and indexation. 
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